Abstract |
As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized β-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target β-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain β-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection. |
Authors |
Lei Zhang , Chaonan Dong , Jihong Wang , Muxing Liu , Juying Wu , Jiexiong Hu , Lin Liu , Xinyu Li , Chengyao Xia , Lingli Zhong , Yuqiang Zhao , Xianfeng Ye , Yan Huang , Jiaqin Fan , Hui Cao , Jingjing Wang , Yuezhong Li , Daniel Wall  , Zhoukun Li , Zhongli Cui
|
Journal Info |
Springer Nature | The ISME Journal , vol: 17
, iss: 7
, pages: 1089 - 1103
|
Publication Date |
5/8/2023 |
ISSN |
1751-7362 |
Type |
article |
Open Access |
hybrid
|
DOI |
https://doi.org/10.1038/s41396-023-01423-y |
Keywords |
Ecosystem Functioning (Score: 0.474737)
|