Detailed Record



An Empirical Spatial Network Model Based on Human Mobility for Epidemiological Research: A Case Study


Abstract Constructing a data-driven spatial contact network model is challenging in epidemiological research. In this study, we examine the applicability of geotagged Twitter data as an instrumental data source for tackling such a challenge. Geotagged Twitter data carrying geolocations of the account users have the strength for longitudinal data collection at a massive scale. Still, the unstructured nature of the data exerts significant methodological and computational difficulties. We focus on methodological solutions and develop a novelty approach that lets a spatial contact network emerge naturally from the massive amount of geospatial tweets. We show that such a data-driven network has reflected the assumptions made by network models regarding human behaviors and has the potential of being used for epidemiological research. To this end, we investigate the network properties and study the spread of pathogens on the proposed spatial contact network by using the homogeneous and heterogeneous susceptible–infectious–recovered (SIR) network models and the event-driven Gillespie's algorithm. Our simulation results strongly suggest that it is feasible to explicitly construct data-driven spatial models using massive longitudinal Twitter data for public health research.
Authors Chen Xu University of WyomingORCID , Libao Jin University of Wyoming , Long Lee University of Wyoming
Journal Info Taylor & Francis | Annals of the American Association of Geographers , vol: 113 , iss: 6 , pages: 1461 - 1482
Publication Date 4/21/2023
ISSN 2469-4452
TypeKeyword Image article
Open Access closed Closed Access
DOI https://doi.org/10.1080/24694452.2023.2187339
KeywordsKeyword Image Social Sensing (Score: 0.553971) , Location-Based Data (Score: 0.524737) , Social Media Analysis (Score: 0.518723) , Digital Epidemiology (Score: 0.5182)