Detailed Record



Physically Consistent Resolving Simulations of Turbulent Flows


Abstract Usually applied simulation methods for turbulent flows as large eddy simulation (LES), wall-modeled LES (WMLES), and detached eddy simulation (DES) face significant challenges: they are characterized by improper resolution variations and essential practical simulation problems given by huge computational cost, imbalanced resolution transitions, and resolution mismatch. Alternative simulation methods are described here. By using an extremal entropy analysis, it is shown how minimal error simulation methods can be designed. It is shown that these methods can overcome the typical shortcomings of usually applied simulation methods. A crucial ingredient of this analysis is the identification of a mathematically implied general hybridization mechanism, which is missing in existing methods. Applications to several complex high Reynolds number flow simulations reveal essential performance, functionality, and computational cost advantages of minimal error simulation methods.
Authors Stefan Heinz University of WyomingORCID
Journal Info Multidisciplinary Digital Publishing Institute | Entropy , vol: 26 , iss: 12 , pages: 1044 - 1044
Publication Date 11/30/2024
ISSN 1099-4300
TypeKeyword Image review
Open Access gold Gold Access
DOI https://doi.org/10.3390/e26121044
KeywordsKeyword Image Large-Eddy Simulation (Score: 0.6576707) , Identification (Score: 0.42680776)