Detailed Record



3D Ultrasonic Brain Imaging with Deep Learning Based on Fully Convolutional Networks


Abstract Compared to magnetic resonance imaging (MRI) and X-ray computed tomography (CT), ultrasound imaging is safer, faster, and more widely applicable. However, the use of conventional ultrasound in transcranial brain imaging for adults is predominantly hindered by the high acoustic impedance contrast between the skull and soft tissue. This study introduces a 3D AI algorithm, Brain Imaging Full Convolution Network (BIFCN), combining waveform modeling and deep learning for precise brain ultrasound reconstruction. We constructed a network comprising one input layer, four convolution layers, and one pooling layer to train our algorithm. In the simulation experiment, the Pearson correlation coefficient between the reconstructed and true images was exceptionally high. In the laboratory, the results showed a slightly lower but still impressive coincidence degree for 3D reconstruction, with pure water serving as the initial model and no prior information required. The 3D network can be trained in 8 h, and 10 samples can be reconstructed in just 12.67 s. The proposed 3D BIFCN algorithm provides a highly accurate and efficient solution for mapping wavefield frequency domain data to 3D brain models, enabling fast and precise brain tissue imaging. Moreover, the frequency shift phenomenon of blood may become a hallmark of BIFCN learning, offering valuable quantitative information for whole-brain blood imaging.
Authors Jiahao Ren ORCID , Xiaocen Wang ORCID , Chang Liu ORCID , He Sun ORCID , Junkai Tong , Min Lin University of WyomingORCID , Jian Li ORCID , Lin Li ORCID , Feng Yin ORCID , Mengying Xie ORCID , Liu Yang ORCID
Journal Info Multidisciplinary Digital Publishing Institute | Sensors , vol: 23 , iss: 19 , pages: 8341 - 8341
Publication Date 10/9/2023
ISSN 1424-8220
TypeKeyword Image article
Open Access gold Gold Access
DOI https://doi.org/10.3390/s23198341
KeywordsKeyword Image Functional Imaging (Score: 0.527623) , Focused Ultrasound (Score: 0.526305) , In Vivo Imaging (Score: 0.522631) , Photoacoustic Imaging (Score: 0.518792) , Ultrasound Elastography (Score: 0.511402)