Abstract |
The dietary proteins in poultry feeds, including the polypeptide chain size, influence gut microbial composition and function. This study assessed the microbial preference for peptide size using the same protein source in three polypeptide forms. We investigated the effects of diphenyliodonium chloride (DIC) on poultry cecal microbiota inoculated with C. jejuni and supplemented with various casein hydrolysates (intact casein, enzyme hydrolysate, acid hydrolysate, and a mix of all three) using an in vitro cecal model. The incubation occurred over 18 hours at 42°C under microaerophilic conditions. We hypothesized a decrease in C. jejuni abundance by limiting nitrogenous metabolites while promoting the growth of protein fermentative bacteria. Additionally, we speculated that the response to DIC would vary with different polypeptides. Genomic DNA was extracted, amplified, and sequenced on an Illumina MiSeq platform. Analysis within QIIME2-2021.11 showed that DIC treatments did not significantly affect C. jejuni abundance but drastically decreased Enterobacteriaceae abundance (ANCOM, P < 0.05). DIC-treated groups exhibited a more stable community structure, especially in the peptide-amended group. Microbial interactions likely aided C. jejuni survival in DIC groups with casein hydrolysates. Methanocorpusculum, Phascolarctobacterium, and Campylobacter formed a core microbial community in both DIC-treated and non-treated groups. DIC altered co-occurrence patterns among core members and differentiated taxa in abundance in acid and peptide-DIC treated groups, changing negative relationships to positive ones (Spearman's Correlation, P < 0.05). Variations in polypeptide composition affected metabolite abundance, notably impacting the urea cycle in Campylobacter and Clostridiaceae. DIC shifted communal energy metabolism in microbiota on casein sources. Campylobacter's adaptability to the deaminase inhibitor indicates reliance on the microbial community and their metabolic products, showcasing its metabolic versatility. |