Abstract |
Cell surface proteins determine how cells interact with their biotic and abiotic environments. In social myxobacteria, a C-terminal protein sorting tag called MYXO-CTERM is universally found within the Myxococcota phylum, where their genomes typically contain dozens of proteins with this motif. MYXO-CTERM harbors a tripartite architecture: a short signature motif containing an invariant cysteine, followed by a transmembrane helix and a short arginine-rich C-terminal region localized in the cytoplasm. In Myxococcus xanthus , MYXO-CTERM is predicted to be posttranslationally lipidated and cleaved for subsequent cell surface localization by the type II secretion system. Here, following our bioinformatic discovery, we experimentally show that myxosortase (MrtX, MXAN_2755) is responsible for the C-terminal cleavage and cell surface anchoring of TraA, a prototypic cell surface receptor. The cleavage by MrtX depends on conserved cysteines within the MYXO-CTERM motif of TraA. M. xanthus mutants lacking myxosortase are defective in TraA-mediated outer membrane exchange and exhibit cell envelope defects. In a heterologous Escherichia coli expression system, the MYXO-CTERM motif is cleaved when MrtX is co-expressed. Therefore, MrtX represents a new family of sorting enzyme that enables cell surface localization of MYXO-CTERM proteins. IMPORTANCE The CPBP (CaaX protease and bacteriocin processing) protease family is widespread across the three domains of life. Despite considerable research on eukaryotic homologs, prokaryotic CPBP family members remain largely unexplored. In this study, we experimentally reveal the function of a novel CPBP protease called myxosortase. Our findings show that myxosortase is responsible for the C-terminal cleavage and cell surface anchoring of substrate proteins containing MYXO-CTERM motifs in Myxococcus xanthus . MYXO-CTERM cleavage also occurred in a heterologous Escherichia coli host when myxosortase is co-expressed. This is the first report that a CPBP protease is involved in protein sorting in prokaryotes. This work provides important insights into the biogenesis and anchoring of cell surface proteins in gram-negative bacteria. |